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The dependence of the parameters of capillary-gravity ripples on the characteristics 
of the steep surface waves (in the range 4-20 cm) that excite them is found. For steep 
4-6 cm waves calculations are performed on the basis of the improved first Stokes 
method. Qualitative coincidence of the theoretical results with the experimental data 
is shown. For 7-20 cm waves the results are obtained by the multiple-scale method 
where the large-scale motion and the driving force for the ripple are found by the 
improved first Stokes method. Qualitative agreement between theory and ex- 
periment in this wavelength range is achieved. 

1. Introduction 
A typical effect observed during propagation of steep surface waves (with length 

from a t  least 2&25 cm) is the excitation of ripples on wave crests with a 
characteristic length of several millimetres. This phenomenon was theoretically 
investigated by Longuet-Higgins (1963) on the basis of the multiple-scale method. As 
the zeroth approximation Longuet-Higgins (1963) used strongly nonlinear sym- 
metrical gravity waves found as by Davis (1951). Longuet-Higgins (1963) considered 
the ripples to be linear and purely capillary, and explained the increase of their 
amplitude by a sharpening of the crests of steep waves. This theory was generalized 
by Crapper (1970) for the case of nonlinear capillary ripples. The necessity of taking 
the capillary-gravity nature of the ripples into consideration was shown by 
Ruvinsky & Freidman (1981). It leads to the possibility of the appearance of group 
synchronism of ripples and steep waves (which in principle cannot be reached for 
capillary ripples). It changes the nature of the dependence of the ripple characteristics 
on the steep wave parameters, as well as affecting the nonlinear damping of these 
waves caused by ripple excitation. 

To test the existing theoretical concepts, Chang, Wagner & Henry (1978) and 
Ermakov et al. (1986) did laboratory investigations of the ripple excitation 
phenomenon. The results of Chang et al. (1978) showed considerable asymmetry of 
the steep wave shapes and also the character of the changing ripple frequency and 
amplitude along the wave profiles. Ermakov et al. (1986) measured the dependence 
of the steepness, wavelengths and frequencies of the capillary-gravity ripples (CGR) 
on the amplitudes and frequencies of the steep waves ; they tested the stationarity 
of CGR excitation, and measured the nonlinear damping of long waves. The 
experiment of Ermakov et al. (1986) showed that the phase synchronism of CGR and 
steep waves assumed in theoretical papers available at that time (Longuet-Higgins 
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1963 and its generalization by Ruvinsky & Freidman 1981) is well justified and that 
steep wave attenuation is caused mainly by ripple excitation. Nevertheless, the 
experiments of Ermakov et al. (1986) and the approximate theory which had been 
developed up to that time, yield an essentially different relationship between ripple 
parameters and steep wave characteristics. The theory predicted that ripple 
excitation must begin with large steepness of strong waves (about the steepness 
where they would start to break if capillarity were disregarded), and an increase of 
ripple steepness is accompanied by an increase of its wavelength and is determined 
by approach to group synchronism of ripples and a steep wave (Ruvinsky & 
Freidman 1981). On the other hand, the experiment shows (Ermakov et al. 1986) that 
ripple excitation begins with strong wave steepness 4-5 times less than the limiting 
one (i.e. gravity-capillary waves (GCW) become strongly nonlinear with relatively 
small steepness) and as the ripple steepness increases its wavelength remains 
practically constant. Thus, the experiments of Ermakov et al. (1986) showed the 
necessity of creating a more detailed theory of ripple excitation. 

Recently much progress has been made in the numerical description of stationary 
GCW of finite amplitude (Rottman & Olfe 1979; Schwartz & Vanden-Broeck 1979; 
Chen & Saffman 1979, 1980; Hogan 1980, 1981) and in the investigation of their 
stability (see e.g. Saffman & Yuen 1985; Zhang & Melville 1987). Nevertheless, a 
description of the ripple excitation phenomenon based on these methods has not been 
adequately achieved, since it is not clear how to take dissipation of ripples and GKW 
into consideration. 

Ruvinsky & Freidman (1985a, b, 1987) suggested that ripple excitation by steep 
GCW should be investigated using the boundary conditions for the potential 
component of the flow, where the influence of viscosity could be taken into account 
by approximation or simulation (the quasi-potential approximation), and using a 
method of solving the equations that can be called the improved first Stokes method. 
Early results on the numerical simulation of ripple excitation were reported by 
Ruvinsky & Freidman (19853, 1987). 

In this paper the improved first Stokes method is generalized (compared to 
Ruvinsky & Freidman (1985b, 1987, where only the GCW harmonic amplitude 
damping is taken into account) to the case of time-dependent phases of the 
harmonics. Detailed calculations of the excited CGR characteristics in the quasi- 
potential approximation on the basis of this method are given. Good agreement of 
the numerical results with the experimental data of Ermakov et al. (1986) is shown. 
The upper limit on wavelength (A = 6 cm) and steepness of GCW for which the 
results can be obtained by this method is determined by the limited capabilities of 
the computers in use. It is shown that, for longer GCW, results which are in 
qualitative agreement with the experiment can be obtained using the multiple-scale 
method where the lower harmonics (they all form a large-scale flow) and the driving 
force for small-scale motion (a ripple) can be found by the improved first Stokes 
method. This is achieved by taking into account the influence of surface tension on 
GCW as well as the finite nature of the ripple source region and the inhomogeneity 
of fluid velocity in GCW in this region (neglect of these factors by Longuet-Higgins 
(1963) and Ruvinsky & Freidman (1981) leads to a qualitative disagreement between 
their theoretical results and the experimental results of Ermakov et al. (1986)). 
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2. Generalization of Stokes method 
It is well known that when describing the CGR excitation phenomenon the 

dissipative processes must be taken into account. In an exact formulation, this 
problem has not yet been solved, even with a computer. A simplification is possible, 
however, at a low viscosity. Ruvinsky & Freidman (1985a, b, 1987) showed (see also 
the Appendix) that in this caae it is possible to express the vortex component of fluid 
velocity through the potential component and consider the problem in the quasi- 
potential approximation : 

v24 = 0, ( la) 

I 
System (1) is in dimensionless form. Here €4 = (k/c) 4, is the potential ; €7 = kql, the 
surface displacement ; ev, = v,, /c, the vertical component of the vortex part of fluid 
velocity, which can be found hom 

Here a = (C/C,)~, co = (gk)i, c is the phase velocity of GCW; k = 2x/A,  the 
wavenumber; 6 a small parameter. The dimensionless coefficients T = yk/c: and 
v1 = vkc/c: characterize the influence of surface tension and viscosity; x = kx,, 
y = ky, are the Cartesian coordinates, and t = kct,. 

In  the case of the space-periodic GCW that we are interested in, the quantities 4 
and 7 are periodic furctions of the phase [ = z-t, the amplitudes of which change 
with time as exp (- Jo 8, dt), 8, = S*/kc. Since 4 satisfies the Laplace equation, it can 
be represented as a sum of Fourier harmonics with amplitudes slowly varying with 
time and exponentially dependent on the vertical coordinate z, as well as on the t 
linear term 

4 = ).t+exp[ -Ld,dt] n-1 (Anexp[ -l(8n-81)dt]sinnt 

+B,exp - (p,,-8,)dt cosn[ en=, (2) [ l  1 1 
where A, = 1,B, = 0. 

Ruvinsky & Freidman (1985a, b, 1987) noted that with this form of the potential 
it is possible to integrate the kinematic boundary condition ( l c )  and express the 
unknown surface 7 through the potential harmonics. Defining v, from ( l e )  we can 
write this integral in the form 
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[vodE = 0, r v d t  = 0. (34 

The integral (3a)  reduces by a factor of two the number of unknowns, thus making 
it much easier to obtain equations for the potential harmonics, as well as to find 
higher approximations and apply numerical methods. 

To obtain equations for A,, B, ( i 2 2), as well as for the phase velocity a and the 
damping S,, we shall insert the integral (3a) into the dynamical boundary condition 
(1 b). Disregarding the terms of order 8; and 6, E and denoting the insignificant terms, 
related to q& and ?f0,,, through Jo we find 

(1-an+Tn2)+B,exp 
n-1 

2v, n2 
x a+ +Tn ) ( 7 - / 3 , ) ]  +sin nE[ -B, exp [ - 1 fin dt]( 1 -an+ Tn2) ( 
+A,  exp [ - [ 6, dt] (a+ ;+ 1 Tn) (v- a,)]} 

(4) 

Here the last two terms on the left-hand side are proportional to E to a power not less 
than unity ; A is equal to the sum of terms taking into account the influence of surface 
tension in the first term. 

Multiplying (4) by cos nE or sin n[ and integrating over the wave period we can 
obtain differential equations for the potential harmonic amplitudes A, and B,. 
However, it is rather time consuming to consider a large number of such equations 
even with the aid of modern computers. 

The problem is simplified for quasi-stationary waves whose amplitudes change 
rather slowly. The quantities 6, and /3, for n > 1 in (4) can be considered equal to zero 
till the variation rate of higher resonance harmonics excited by lower ones is less than 
their intrinsic damping rate, i.e. a,, /3, 4 2v, n2/a since for non-resonance harmonics 
the neglect of 6, and /3, is valid owing to the large mismatch [i -an+ Tn2]. In such 
an approximation, higher harmonics are defined through the first one (at given phase 
velocity a and damping 6,) by nonlinear algebraic equations. After solving these 
equations at t = 0 we can determine a and Sl as a function of E from the equation for 
the first harmonic amplitude bearing in mind that A, = 1, B, = 0. In other words, 
defining a and 6, reduces the problem to finding the eigenvalues of the set of 
nonlinear equations. 

Within the framework of such an approach we can roughly take into account the 
influence of non-stationary CGR generation by assuming that 6, and /3, are 
expressed through S, by 

This approximation can be called the second-order quasi-stationary approximation. 
For space-periodic waves, such a definition clearly does not lead to fundamental 
effects and we shall not focus on it. However, when the propagation of quasi-periodic 
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GCW is analysed, an analogous definition could be necessary to investigate the GCW 
self-modulation processes, for example. 

As the calculations showed, with large steepness of GCW the conditions of quasi- 
stationarity for resonance harmonics become less applicable. For example, with A = 
5 cm for the limiting steepness 2 A / A  = 0.058 (where A is GCW amplitude), for which 
results are obtained by the proposed method, and for the number of the resonance 
harmonic n = 10, 6,a/2v1n2 s 0.2. With further increase of GCW steepness this 
ratio increases more. Nevertheless, the wave form, phase velocity and damping 6*, 
specified above, have a definite physical meaning in this case as well. Indeed, 
assuming that the wind influence can be taken into account by introducing the 
increment yw for the first harmonic of the potential we find that with viscosity taken 
into account there can exist a nonlinear stationary solution determined by the same 
equation for A,,, B, as the quasi-stationary one at  6* = y,. 

To define the quasi-stationary GCW characteristics we write a nonlinear system 
which follows from (4) in such a form that along with the unknowns A,, B, (i 2 2 )  
there are also a and 6,: 

In  system (6) the summation is over repeated indices ; m = ( 1 ,  . . . , N), n = (2,  . . . ,N)  ; 
the coefficients and the right-hand sides are functions of the potential harmonic 
amplitude, the damping coefficient and the phase velocity a. They have the form 

M m ,  1 = -AC,,,(1-s2), (7) 

M,, ,  = ACm,,[ -2a+1-4T+s2(-12T+3a)+BC,,, 2v1 4+-+8- “ : 3  
--2(i+a+2T) +Ym, 2, (8) I1 

ym,  , = 2a[AC,, l(a-%T) +AC,, 3%T+ 12(A,AC,,,-B,BC,, J] +s215TAC,, 4, (9) 

M,, ,, = AC,, ,[ -an+ 1 + Tn2] + BC,, , -+a+ Tn (2v1 n2/a-S,) + y,, R ,  (10) (: ) 
y,, ,, = m[ACm,  ,_,(a-+T(n+ 1) )  +AC,, n+lQT(n+ 1 )  + (2a- T(n+ 2 ) )  (A, AC,, ,,-, 

+B,BCm, ,-2) +3T(n+2) @SAC,, n+z-BfBCm, n-2)]-$2Tn[LACm, ,-2(n+6) 
- 15AC,, ,,+,(n+2)]+s2nAC,, ,,-,(a+T(n+ I ) ) ,  - (11) 

(12) 
=AC,,i(s2a- 1)-BCm,14V1, (13) 

(14) 

Fm = Rm + Y m ,  1 + Y m .  ,An +Cm, n? 

p,,, = T c AC,,.n2+BC,,,, (“v~n3 -- 6, n)] + Ym, n* 
Here 

ACm. n = rz eenv cos nx cos mx dx ; BC,, = eanv sin nx cos mx dx ; 

Rm = ~z{T~zz/[l + (eq,)2]~-&a(V$)2} cosmxdx 

is the Fourier cosine coefficients of these functions. L in (11) is equal to unity. The 
coefficients N,, ,,, [,, ,, are obtained from relations (8)-( 11)  and (14) forM,, ,,, p,, ,, by 
substitutions 6, +Pn, AC,. ,, + -BC,, ,, BC,, ,, + AC,, ,, and in ( 1  1 )  one should put 

(15) 
L = - 1,  while Nm,l = -BC,,,(l+a+T). 
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FIGURE 1. (a)  The form of the free surface of GCW and (6) its first derivative, at A = 6 cm, 
MIA = 0.066. 

The quantities L,, ,, L,, , are obtained from (7)-( 11) by the substitutions 

eonq cos nx sin mx dx, 

= rn esn7 sin nx sin mx dx 

BC,, , + BS,, , 
= I n  

ACm, n n 

at L = 1 in (11). In order to find K,, ,, the substitutions AC,. , + -BSm9 ,, BC,. , --f 
AS,, ,, /3,+6, are needed, and with L = - 1 in (11). The right-hand side of (6), F,, 
is sought from relations (12)-( 14) if 

R,+T, = [T~zz/[l+(qz)2]~-$z(Vq4)2]sinmxdx 
I n  

and substitutions AC,, , +AS,, ,, BC,, , + BS,, , are made in j j  and t. 
The coefficients on the left-hand side of (6) consist (see (7)-(11)) of a part 

independent of B (for the harmonic amplitude coefficients this corresponds to 
dispersion equations with damping taken into account) and a part dependent on B in 
the first and second power. The second part consists of quadratic and cubic terms 
(that correspond to self-modulation, cross-modulation and parametric interaction) 
taken from the last two terms on the left-hand side of (4). The remainder of these 
terms is on the right-hand side of (6). This partition is to ensure that the determinant 
of (6) does not become zero because of the higher-harmonic resonance when the above 
method of solution is used. 

Equation (6) together with (3) was solved with a computer by the iteration 
method. As initial condition we put  A ,  = 1,B, = O,A,, Bt = O ( i  > 1) ;  the initial 
values of a and 6, were approximated by the values following from the weakly 
nonlinear theory, 8, and /3, at n > 1 were considered equal to zero (/3, = 0). Then 
from (3) we found the form of the surface 7 by iteration. Thereafter we determined 
the right-hand sides and the coefficients in (6) and then calculated new values of A,, 
B,, a and 6,. The cycle was repeated till the relative error in defining the sought 
values became smaller than a given error (this error was 1 % for harmonics with 
C, = (A: +B:)i 2 

The wave form obtained the manner given above (figure 1) is in good agreement 
with the experimental data of Ermakov et al. (1986). Using the GCW profiles we can 

and log C, % at C,  < lo-'). 



FIQURE 2. The dependence of (a) the ripple steepness and (b) its wavelength at the crest of GCW 
on their steepness. Solid curves correspond to theoretical results (curves 1-3 are obtained by the 
improved first Stokes method; curves 4-7 are obtained by the multiple-scale method): curve 1, 
A=4cm;2,A=5cm;3,A=6cm;4,A=7cm;5,A=10cm;6,A=15cm;7,A=20cm. 
Dashed curves correspond to averaged experimental results: curve 1, f = 5.9 Hz (A, = 5 cm); 2, 
f = 4 Hz (A, = 10 om). A, is the wavelength of GCW in the linear approximation. Experimental 
points correspond to the following GCW frequencies : -t , f = 7 Hz (A, = 3.9 cm) ; 0, f = 5.9 Hz 
( A ,  = 5 cm); A, f =  4.8 Hz (A, = 7 cm); A,!= 4 Hz (A,  = 10 cm). 
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FIGURE 3. Dependence of the nonlinear decrement of GCW due to ripple generation on their 
steepness: curve 1, A = 4 cm; 2, A = 5 cm; 3, A = 6 cm. 

find the dependence of ripple steepness (curves 1-3 in figure 2a) and wavelength 
(curves 1-3 in figure 2b)  at the crests of GCW on the GCW steepness MIA, where 
A is the wave amplitude. From these figures it is seen that, as in the experiment, the 
ripple steepness at the crests grows rapidly with increasing steepness of GCW while 
the ripple wavelength remains practically unchanged. Figure 3 shows the dependence 
of the damping 8, on the steepness of GCW at several values of the wavelength of the 
GCW. In this case, the decrease of GCW increases sharply in the parameter range 
where CGR are excited intensely, as was to be expected. This is another proof of the 
conclusion of Longuet-Higgins (1963), Ruvinsky & Freidman (1981), and Ermakov 
et al. (1986) that the ripple excitation damps the GCW. 

Because of the limited volume of operative memory, the computer we used (64 kB) 
permitted us to take into account only 27 harmonics of the GCW potential. This 
determined the wavelength (4-6cm) and the steepness range of these waves (see 
figure 2a)  for which correct results could be achieved by such a method. At large 
wavelength and steepness of GCW the second harmonic of CGR began to be excited 
intensely in the displacement spectrum. This stimulated resonance corresponds to 
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higher harmonics than those taken account of in the potential and distorts 
significantly the wave profile. Hence, to describe correctly the second harmonic of 
the ripple, a corresponding number of harmonics (more than we could achieve) must 
be retained in the potential, i.e. more powerful computers are required. 

It should also be borne in mind that this method is inapplicable when a strongly 
nonlinear CGR is excited and the displacement becomes an unambiguous function of 
the horizontal coordinate. When studying such ‘superstrong ’ GCW it is necessary to  
consider as independent variables quantities, the displacement dependence on which 
is ambiguous, e.g. the potential and the current function, like when the second Stokes 
method is used (Stokes 1880; Chen & Saffman 1979, 1980). The wave surface 
deviation from the current line (Y = const) can approximately be defined from 
relations (3) bearing in mind that in the zero approximation (with respect to the 
amplitude variation velocity) the function qo(t, #) in (3.1) is governed by the equation 
Y = Yo. Evidently, ‘superstrong’ quasi-stationary GCW do not form in nature 
because of the fast increase of the nonlinear damping of GCW with increasing 
amplitude of CGR excited on the crests of the GCW. Therefore, the investigation of 
such waves is still an unsolved problem of fundamental interest. 

3. Extension to higher wavelengths : the multiple-scale method 
In some cases, for example at the upper boundary of the GCW wavelength range, 

where the necessity of taking into account a large number of harmonics can lead to 
insurmountable computational difficulties with a ‘straightforward ’ solution of the 
problem, it should be reasonable to consider separately a large-scale and a small-scale 
motion. 

Let us represent the potential and the displacement as 4, = #* +#r and q ,  = 
v*+qr, where #* and q* determine the large-scale motion (GCW part), while #r and 
rr describe the small-scale motion (ripples). To obtain for the GCW part, we shall 
make use of the spectral method proposed. The velocity a and No potential harmonics 
that define GCW, as well as the decrement S, are found from the UV,, equations 
obtained from ( 4 )  by corresponding Fourier transforms. 

Assuming that the ripple steepness is small we can determine the ripple 
characteristics by obtaining from (l) ,  analogously to Ruvinsky & Freidman (1981), 
a linear boundary-value problem with variable coefficients and driving force : 

VZ#, = 0, (16a) 

%+O at n+--oO. 
an 

Here s and n are the respective coordinates along the steep wave surface and along 
the external normal to it ; Uo(s, t l )  = a#*/as, the fluid velocity in GCW along the free 
surface ; g(s, t,) ,  the normal component of gravitational acceleration. 

Without specifying the driving force F(s, t , )  we find the solution of set (16) in the 
WKB (geometrical optics) approximation. In the reference frame related to GCW we 
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should find stationary small-scale corrections to the steep wave. We therefore seek 
a solution in the form 

9, = @ exp [ i lo k,(s) ds + JI K,(nn) dn] + c.c., 7, = Hexp [ i lo k,(8) ds] + C.C. 

Expressing the potential amplitude through the displacement amplitude from (16c) 
and substituting the result into (16b) we obtain an inhomogeneous differential 
equation for H. Using the methods of variable differentiation and arbitrary constant 
variation we find that the ripple steepness 0, = 2Hk, is given by 

Here Uo = c- ( ~ c / k )  (a$/&) ; 9 is determined by (2) at N = No ; the coordinate 8 m 
x + 0 ( O 2 ) ,  where 0 is the steepness of GCW; V = tU,+yk,/Uo is the group velocity of 
the ripple on quiescent fluid. The wavenumber k, is found from the dispersion 
relation : 

To find the ripple steepness in (17), the driving force 9 ( x )  must be determined 
sequentially. Bearing in mind the method used in defining the large-scale motion we 
find that this force represents the difference between the left-hand side of (4), taken 
at N = No, and the sum of its No harmonics. Numerical calculations show that the 
main contribution to the driving force is yielded, as was predicted by Longuet- 
Higgins (1963), Ruvinsky & Freidman (1981), and Ermakov et al. (1986), by the term 
related to surface tension, i.e. proportional to the curvature K. However, to define 
accurately the higher harmonics of this ‘force’, which we are interested in, it is 
necessary to take into account the finite number of non-resonant harmonics of the 
potential, for which the surface tension is essential. 

The numerical simulation of small-scale ripple excitation indicates that the 
multiple-scale method yields results in qualitative agreement with the experimental 
data for sufficiently long GCW in the range A 2 7 cm. With increasing the number 
of the potential harmonics taken into account in the large-scale motion from 4-5 to 
several below the resonant harmonic, the ripple parameters (figure 4) change little, 
not more than 10-15% (because of these inaccuracies the dependence &(A) can be 
a non-monotonic one (figure 2 b ) ) .  This is an indication that when describing a large- 
scale motion we can restrict ourselves to 4-5 harmonics of the potential. 

Figure 4(a, b) shows the calculated changes in steepness 0Jz) and wavelength A,(x)  
along the GCW. This figure shows one trough-to-trough wave period. It is seen that 
the ripple is excited at the crest of the GCW and its wavenumber changes 
significantly in this region. Therefore, the finiteness of the source region and the 
inhomogeneity of the fluid velocity there must be taken into account. Because of 
this, the ripple parameters should be determined not at the top of the GCW but at 
the end of the excitation region (figure 4). 

Figure 2 (curves 4-7) shows the dependence of 0, and A, on the GCW steepness and 
wavelength, found by the multiple-scale method. The lower limit on this dependence 
0,(A/A) at a fixed A is determined by the difficulty in distinguishing small higher 
harmonics from large lower ones, in the numerical experiment. The upper limit 
depends on the approach to the group synchronism of ripples and GCW and on the 
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I a -  

O ' "  0 " 5  

n, 4 4  20 

0. 
0 " 5  X 

FIGURE 4. Dependence of (a) the ripple steepness, ( b )  wavelength and (c) dimensionless wavenumber 
n1 = k,/k = A/A, on the dimensionless distance to the crest of GCW at the steepness 2AIA = 0.091, 
the wavelength A = 10 crn and the number of potential harmonics that form GCW proper, No = 
5. When plotting the dependence Or([) in (a) the harmonics beginning from the sixth are filtered. 

applicability range of the WKB approximation, where this dependence is obtained. 
It is seen that the experimental and theoretical results are in qualitative agreement. 
However, bearing in mind the accuracy of the numerical and laboratory experiments, 
it should be apparent that the true ripple characteristics are between these two 
limits. 

Taking into account the data of Longuet-Higgins (1978a, b) on the breaking of 
surface waves with steepness 2 A / A  greater than 0.13, the results we obtained (curve 
7 in figure 2a) indicate that the long-wave limit of GCW capable of exciting ripples 
without breaking is a wavelength of the order of 20 em. 

4. Summary and conclusions 
The theoretical investigation in this paper explains and describes quantitatively to 

a remarkable degree the phenomenon of CGR excitation by stationary and quasi- 
stationary GCW. It is therefore possible to obtain the ripple characteristics from the 
GCW characteristics, as well as the nonlinear damping of these waves related to the 
ripple excitation. An important problem is still unresolved concerning the upper 
limit (with respect to the GCW wavelength and steepness) on the applicability range 
of the improved first Stokes method. This requires the use of more powerful 
computers where one can take into account several hundreds of GCW harmonics. 

These results can be used to estimate the surface-wave spectra in the centimetre 
and millimetre regions under natural conditions, although there the ripple excitation 
is non-stationary. This is confirmed by the fact recently ascertained by Ermakov, 
Ruvinsky & Salashin (1988) on the basis of the numerical calculations in the paper 
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and the experiments of Ermakov et al. (1988). Namely, it is found that the ripple 
characteristics are approximately determined by only one parameter - the radius of 
curvature of the GCW crest. It is therefore possible, knowing the distribution 
function of the surface curvature and the characteristics of ripples excited by an 
individual crest, to find the ripple spectrum. On the other hand, the relationship 
between the nonlinear damping of GCW and ripple excitation, which we obtained in 
this paper, permits one to investigate the spectrum evolution of GCW themselves 
(Ruvinsky & Freidman 1989) on the basis of the phenomenological kinetic equation 
proposed by Ruvinsky & Freidman (1985 b). Using this equation one can also study 
the interaction of long surface waves with the GCW spectrum and its modulation by 
internal waves. 

Thus, the results obtained in this paper can be used to solve a number of problems 
when the high-frequency region of the surface wave spectrum is investigated. 

Appendix. Quasi-potential approximation for the description of nonlinear 
gravity-capillary waves on the surface of a viscous fluid 

In this Appendix we give approximate equations, called below the quaai-potential 
equations, to simplify the investigation of the influence of viscosity on nonlinear 
surface waves. 

For linear gravity-capillary waves (GCW) the quasi-potential approximation was 
proposed by Ruvinsky & Freidman (1981) to take into account the damping of 
ripples excited by steep gravity waves. A model taking into account the damping 
under the boundary conditions for the potential component of the nonlinear GCW 
motion was used by West (1982). However, the model proposed by West (1982) is not 
quite correct since the damping yielded by this model is half the correct value for 
linear GCW. A closed set of quasi-potential equations for nonlinear GCW was first 
formulated without a detailed derivation by Ruvinsky & Freidman (1985a, b, 1987). 

In this appendix we give a sequential derivation of the kinematic and dynamic 
boundary conditions for the potential component of the flow, which approximately 
takes into account the influence of viscosity, as well as the equations for the normal 
(to the free surface) component of the vortex flow. Together with the Laplace 
equations these last equations form a closed set of nonlinear quasi-potential 
equations. 

When deriving the quasi-potential equations we use the fact, well-known from the 
linear theory of GCW damping (Lamb 1932; Landau & Lifshitz 1959), that in the 
case of low viscosity, which will be considered below, the vibrational part of the 
vortex flow component is localized in a narrow (compared to the penetration depth 
of the potential component) layer of thickness 6 near the free surface. A similar 
situation permitting one to take into account the influence of viscosity only under 
the boundary conditions for the potential part of the motion, also arises when 
investigating the flow excited by a body with dimensions 1 B 6 vibrating in liquid 
(Landau & Lifshitz 1959) as well as when defining the influence of energy dissipation 
in the bottom boundary layer on wave reflection from the shore (Mahony & 
Pritchard 1980). 

As is well known (Whitham 1974), the kinematic boundary condition can be 
written in an invariant form: 
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Here F(q, t , )  = 0 determines the free surface; q is the spatial coordinate, U is the fluid 
velocity, U,, is the normal component to the free surface. 

In  the case of low viscosity it can be assumed that the vibrational part of the flow 
in a surface wave in the laboratory reference frame U, = V#,+ u, consists of a 
potential component V#l and a small vortex part vl excited by the potential 
component. (In a linear approximation lull/lV#ll - k/m = (2n/A) (2v/w)r, where 
k-l = A/2n and m = 13 = (2v/w)iare respectively the penetration depth of the potential 
and the vortex component of the liquid velocity ; w and A are characteristic time and 
space scales of GCW, respectively. For water at A 2 0.5 cm we have k/m - The 
equation for the normal velocity component wln, involved in (A i), can be found, as 
is shown below, from the equation for vorticity, the source of which is defined by the 
boundary condition for the tangential (to the surface) stress tensor component and 
the continuity equation. 

For plane motion, which we shall consider below, the equation for vorticity 

in a laboratory system has the form 

(A 2) 
aQ -+ (u, V) Q = vV2Q. 
a t 1  

Here s is the coordinate along the GCW surface (where n = 0) ,  n is the coordinate 
along the normal to this surface; the unit vector yo = [so x no]. The Lyame 
coefficients of this coordinate system are equal (Longuet-Higgins 1953) : gn = 1, ge = 
(1 +nK)2, where K(n, 8 )  is the curvature of the coordinate lines. 

The fast-varying nonlinear terms in the equations of motion, which are due to the 
vortex velocity component, proportional to the product of two small parameters (the 
ratio k/m and the wave steepness), and at k/m 4 1 they clearly cannot lead to 
noticeable effects. Therefore, when finding the oscillating part of the vortical motion 
one can restrict oneself to the linear approximation (in particular, the curvature of 
the coordinate lines is neglected). 
As is known from the linear theory of GCW damping (Lamb 1932; Landau & 

Lifshitz 1959) wln/w18 - k/m - A-l(v/o)t  4 1. Therefore it can be assumed that in a 
linear approximation the vorticity Q x -avl,/an. Then from (A 2) we obtain a t  the 
first order in the ratio k/m 

& = a3vlS 
anat, an3 

V- 

The boundary condition for (A 3) is the condition for the tangential component of the 
stress tensor on the free surface, which a t  wln/wls 4 1 has the form: 

From (A 3) with the boundary condition (A 4), which in fact defines the surface 
source of vorticity, one can find the quantity vls and then define the normal 
component vln from the continuity equation : 

The quantity vln entering (A 1) at  the boundary can be determined from 
(A 3)-(A 5) without finding wln inside the fluid. Differentiating (A 3) with respect to 
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s, we substitute avl,/as from (A 5) into the left-hand side and integrate it twice with 
respect to n. Then substituting avl,/an from (A 4) to the right-hand side we find 

Generally speaking, the integration of (A 6) involves the terms A(s)  n+B(s), where 
A(s)  and B(s) are some functions. The first term is equal to zero since (A 6) is taken 
on the free surface (where n = 0) and the second term is assumed equal to zero since 
we seek a vortex flow excited by a potential flow. 

To obtain a closed set of quasi-potential equations the boundary conditions (A l),  
(A 6) must be supplemented with the boundary condition for the normal (to the free 
surface) component of the stress tensor. Bearing in mind that v,,/(a#,/an) - k/m Q 
1, this boundary condition can be written as 

Here p and po  are the pressures inside and outside the fluid, respectively ; p is the fluid 
density; y = a/p,  where a is the surface-tension coefficient. 

In  the case of pure potential motion, p is substituted into (A 7) from the Bernoulli 
integral and the resultant equation is used as the dynamic boundary condition. In a 
similar fashion, we integrate the NavierStokes equation, written in a laboratory 
reference frame, along the vertical coordinate z1 from - co to the free surface ql(xl, 
t l )  

+r [(u+V#,)xa]dz,. (AS)  

Here z1 is the distance in the vertical direction from the chosen reference level of 
potential energy to the free surface ; the pressure p is defined by (A 7) ; the width of 
a viscous boundary layer 8 -  l / m .  To close the set of quasi-potential equations 
entering (AS),  the vertical velocity component can be found from (A3)-(A5). 
Meanwhile, among the terms describing the influence of viscosity in (A 8) we need 
take into account in the h t  approximation with respect to the small parameter k/m 
only the term 2 ~ a ~ # , / a n ~  in the relation for p (see (A 7)). (In fact, va2#,/an2 - v6' 
where 6' is the steepness of GCW ; 

71-8 

[u, x a] dz, - 8'02 ; vV#, - 86'' ; 8 - v:.) 
In  this approximation (bearing in mind also that, accurate to quadratic terms 
a2#,/an2 = -a2#1/as2), the relation (A 8) can be written as 

The nonlinear terms in the amplitude of the oscillations in these equations lead, 



352 K .  D .  Ruwimky, F .  I .  Feldstein and G .  I .  Freidman 

besides the fast-varying components, to a slowly varying vortical velocity U, 
component. This is due to the transfer of the momentum of the damped wave motion 
to the vortex flow, the energy of which decreases continuously while the momentum 
is conserved (before the interaction with the walls). The velocity of this flow depends 
on the pre-history, the fluid volume configuration, the characteristics of the fluid 
volume boundaries (the walls and the bottom) (Dore 1985; Craik 1982). The velocity 
U, need not be so small. For example, it can be easily shown using the momentum 
conservation law that when a spatially homogeneous wave with the initial vibrational 
velocity wo is damped, then a flow is excited whose velocity (A2U = wi/c) after the 
wave damping for strong waves (w, - c )  can be close to their phase velocity c. In this 
case, the flow appears to be localized in a layer of depth h, - k- l ,  which thereafter 
expands (h  - ( v t ) ~ ) .  

The existence of a shear flow with a velocity discontinuity in the localization region 
of potential wave motion of the order of the phase velocity can, as is well known (see 
e.g. Lin 1955), lead to fundamental effects because of the coincidence layer. The 
above estimates show, however, that this is valid only for waves of nearly limiting 
steepness since wo N c only for such waves. In the parameter range of interest w, 4 
c (figure 2) so that although U, can be comparable with the phase velocity of the 
wave due to continuous accumulation, the velocity discontinuity at  depth k-’ is of 
the order of AU, i.e. much less than c. Therefore, when determining the wave form 
and the wave parameters the shear flow can be either disregarded or assumed to be 
a given depth-homogeneous flow. 

Thus the Laplace equation with boundary conditions (A l ) ,  (A 6), (A 9) forms a 
closed set of quasi-potential invariant equations, which takes into account in the first 
approximation the influence of viscosity on the form and amplitude of GCW. If we 
define the free surface by the equation F = z1 - sl(zl, tl), where zl, z1 are the Cartesian 
coordinates and bear in mind that wls = wlZ,, a2#1/an2 = a2#Jaz;; aa#Janas2 = 
a3#Jaz1 axl, in the linear approximation, then this set can be written as (1). 

To investigate the structure and propagation of GCW with dissipation taken into 
account it is possible to use a simpler set than ( I ) ,  permitting the model to take into 
account the influence of viscosity. This set follows from (1) if we put wlz = 0 and 
substitute the coefficient (2v) for (4v) in the dynamic boundary condition. The use of 
such model boundary conditions is justified by the coincidence of the exactly found 
linear wave damping and the value obtained from this model set. 
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